Top221pn схема включения без трансформатора

Top222yn схема включения в сварочном инверторе

Блок питания на TOP222Y: AVR devices

Понадобился мне для одного из моих проектов блок питания. Да такой чтоб с небольшими габаритами и с приличными характеристиками. Мне требовалось напряжение 5 вольт и ток не менее двух ампер. Однозначно, что блок питания должен быть импульсным. Сейчас существует великое множество различных ШИМ контроллеров на которых можно сделать такой блок питания. Я решил остановится на микросхемах от Power Integrations а точнее на Top Switch. Выбор обусловлен популярность и низкой ценой при неплохих характеристиках.

Кроме этого не надо почти ни какой обвязки и настройки! Короче как раз для меня Хочу напомнить что блок питания является источником повышенной опасности, так как некоторые его детали находятся под напряжением угрожающим жизни человека. Высоковольтный электролитический конденсатор С2 в некоторых случаях может длительное время быть заряженным! Короче я предупреждал. Хотя ток своих не бьёт

Теперь немного сухих цифр:

  • Входное напряжение от 85 до 265 вольт
  • Выходное напряжение 5 вольт
  • Максимальный ток 2 А
  • Пульсации напряжения

30 милливольт

Защита от перегрева
Защита от короткого замыкания

А вот и схема этого девайса:

Ничего нового я здесь не изобрел. Эту схему можно найти в одном из многочисленных апноутов производителя. Вместо TL431 можно поставить обычный стабилитрон, но упадёт стабильность напряжения и нельзя будет его скорректировать. Для коррекции напряжения нужно поиграть резисторами R3 или R2. Можно поставить вместо одного из них подстроечник и установить нужное напряжение.

ИМПУЛЬСНЫЙ СТАБИЛИЗИРОВАННЫЙ БП НА TOP222YN

Предлагаемый блок питания ( БП ) вырабатывает стабильное выходное напряжение при изменении напряжения питающей сети в очень широких пределах. Данный блок питания предназначен для питания нагрузки, для которой не обязательна гальваническая развязка с электросетью. Устройство может заменить обычно используемые батареи гальванических или аккумуляторных элементов.

Основные технические характеристики:Напряжение питающей сети, В – 60. 265;Номинальное выходное напряжение, В – 15;Ток нагрузки, мА — 75. 200;Стабильность выходного напряжения, % – 5;Частота преобразования, кГц – 100.

Схема импульсного стабилизированного БП показана на рис. выше. Резистор R1 ограничивает пусковой ток. Диодный мост VD1 выпрямляет напряжение сети, фильтр C1C2L1 его сглаживает. Резистор R2 снижает добротность контура, образованного индуктивностью дросселя L1 и его конструктивной емкостью. Остальная часть устройства — импульсный стабилизированный понижающий преобразователь ( ИСПП ), разработанный фирмой Power Integrations . Постоянное напряжение на входе ИСПП может изменяться в очень широких пре­делах 38. 375 В , но при любом допустимом токе нагрузки выходное напряжение отклоняется от номинального значения 15 В не более чем на 5 % . Основа ИСПП — принадлежащая к семейству TOPSwitch-II микросхема TOP222Y (DA1) .

В предлагаемом устройстве микросхема применена нестандартно. В начале цикла преобразования открывается мощный выходной МОП транзистор микросхемы, его сток соединен с выводом 3, а исток — с выводом 2 . Диод VD2 закрыт. Ток через дроссель L2 линейно нарастает и заряжает конденсатор С5 . Магнитопровод этого дросселя накапливает энергию. Под управлением ШИ контроллера микросхемы ее выходной транзистор за­крывается, диод VD2 открывается, накопленная дросселем L2 энергия передается в нагрузку и также подзаряжает конденсатор С5 . Попутно поглощается импульс напряжения на дросселе L2 , что предохраняет выходной транзистор от пробоя.

Выпрямитель VD4C4 вырабатывает напряжение обратной связи. Значение выходного напряжения складывается из образцового напряжения 5,7 В , вырабатываемого внутренним источником микросхемы, и напряжения стабилизации стабилитрона VD3 . Количество энергии, передаваемой на выход, регулирует ШИ контроллер. Уменьшение тока нагрузки ниже 75 мА переводит преобразователь в прерывистый режим работы, возникают пульсации выходного напряжения. Снизить минимально допустимый ток нагрузки до 25 мА можно путем увеличения индуктивности дросселя L2 .

Конструкция и детали

Устройство смонтировано на печатной плате из односторонне фольгированного стеклотекстолита, чертеж которой показан на рис. ниже. Дроссель L1 содержит 40 витков провода ПЭЛ диаметром 0,1. 0,2 мм на ферритовом кольцевом сердечнике М2000НМ, 10х6х3 .

Top222yn схема включения в сварочном инверторе

Были все основания предполагать неисправность в блоке питания. Импульсный питатель этого инвертора собран на TOP222, и надо сказать был основательно перепахан предущим ремонтником в попытке найти дефект. Но поиски, по всей видимости, оказались безуспешными.

Учитывая неоднозначность дефекта и предыдущие попытки ремонта, поиск несправности мог затянуться, поэтому выпаиваем силовые транзисторы, пока они живые, кстати их тоже пытались менять (безрезультатно), и пробуем запустить аппарат без них. Включаем неисправный инвертор РЕСАНТА САИ 220 через латр.

Результат несколько озадачил.

Все стало выглядеть еще веселее, если не сказать — смешнее.

Примерно от 70 вольт блок питания инвертора нормально запускался (только, естественно, горел желтый светодиод защиты) и до 150 вольт нормально работал, но выше 150 вольт начиналась дискотека со световыми и звуковыми эффектами.

Блоку питания чего-то не хватает, что-бы запуститься. Чего? Сам он неисправен или во вторичках проблемы? Но надо с чего-то начинать, попробуем уменьшить ток потребления вторичек, отпаиваем вентилятор и включаем инвертор.

И свершилось чудо, дискотека прекратилась и инвертор нормально включился. Значит дефект не в блоке питания? А где? Вобщем поиск еще мог бы долго продолжаться если бы неисправная деталь сама себя не выдала. Внимательно посмотрев представленное выше видео на 42 секунде, сквозь вентилятор, можно заметить легкую струйку дыма идущую со стороны драйвера.

Дальше было проще, после непродолжительной прозвонки деталей драйвера был найден виновник всех этих шабашей и дискотек.

Теперь все запускается и работает нормально

Внимание! Внешнее проявление дефекта бывает далеко неоднозначно и иногда может завести прямо в противоположную, от неисправной детали, сторону. Судя по перепаханному блоку питания после предыдущего ремонта

Ремонт сварочных инверторов Ресанта и других производителей.

Трансформатор

Это пожалуй самая сложная часть этого блока питания. Его придётся наматывать самому. У Power Integrations даже есть программа предназначенная для расчёта трансформаторов, но моего TOP222Y среди поддерживаемых ШИМ контроллеров почему то не оказалось. Поэтому пришлось курить мануалы, читать форумы и спрашивать знающих людей. Параметры трансформатора очень сильно зависят от сердечника. Сердечник который я применил в своем блоке был выдран из другого трансформатора от импульсного блока питания принтера. Размеры сердечника такие:

Чтоб разобрать готовый трансформатор пришлось изрядно повозится. Для того чтоб половинки сердечника расклеились мне пришлось варить трансформатор в кипящей воде некоторое время Как видно из рисунка сердечник уже имеет зазор посередине. Если у вашего сердечника нет такого зазора то его нужно сделать проложив между его половинками бумагу. Он должен быть примерно 0,1 — 0,2мм. Наматывать трансформатор нужно начинать с первичной обмотки. Я наматывал её проводом диаметром 0,2 мм. Всего я намотал 130 витков. Допустимо использовать от 0,15 мм до 0,25 мм в зависимости от мощности. Провод наматывается виток к витку. Когда первый слой намотан нужно намотать поверх него слой какой-нибудь тонкой изоляционной плёнки. Я использовал какую-то жёлтую плёнку от другого трансформатора. Продолжать наматывать второй слой обмотки нужно с того же места где закончился первый. У меня всего получилось три слоя. Когда первичка намотана нужно намотать на нее пару слоёв плёнки дабы не замкнула она со вторичкой. Начало обмотки нужно отметить как либо

Это важно! Начало обмотки обозначено на схеме точкой, если концы обмотки перепутать, то блок питания не запуститься или будет отдавать крохотную мощность. Вторичку я мотал проводом диаметром 1 мм 6 витков

Её нужно равномерно растянуть по всей поверхности. После неё еще один слой изоляции и мотает третью обмотку. Я мотал её тем же проводом что и первичку (0.2 мм) 12 витков. Их так же располагаем по всей длине каркаса и не забываем про начало и конец обмотки. Все обмотки мотать надо в одном направлении. Когда намотка обмоток завершена, наматываем еще один слой изоляции, вставляем сердечник, заклеиваем его, припаиваем проводки к штырькам на каркасе и трансформатор готов!

Конденсатор С5

Страшный конденсатор как кажется на первый взгляд. Стоит между высоковольтной и низковольтной часть блока питания. А это значит что если его вдруг пробьёт, то блок питания превратится в машину смерти! Поэтому нельзя ставить туда конденсатор какой попало. Для таких целей существуют специальные Y конденсаторы. Бывают Y1 и Y2 нам подойдет любой из них с ёмокстью около 3.3 нф. Чтоб знать как он примерно выглядит я сфоткал свой:

С этим конденсатором будет немного щипать, если одновременно коснуться заземления и вывода блока питания. Но ничего страшного в этом нет, этот конденсатор стоял абсолютно во всех импульсиниках которые мне доводилось разобрать. И все они точно также кусались. Возникает вопрос, а зачем вообще он нужен? Можно его не впаивать, блок питания заведётся и будет работать но будет выдавать сильные пульсации на выходе. На осциллограмме ниже можно видеть пульсации напряжения на выходе блока питания. В момент снятия показаний, блок питания был нагружен проволочным резистором 5 ом, а конденсатор С5 не впаян :

А теперь я впаял конденсатор. Нагрузка та же самая:

Видно что пульсации сильно уменьшились, хоть и остались довольно существенными. Но для меня это не особо критично, т.к. этот блок питания будет всего лишь заряжать пальчиковые аккумуляторы. Чтоб избавится от остатков пульсаций нужно правильно намотать дроссель и не жалеть ёмкостей С6 и С7. Кстати конденсатор С1 тоже не простой. На нем должно быть написано X2. Его можно найти в компьютерных блоках питания. Он нужен (как я понял) чтоб не выпускать помехи которые создает блок, в сеть 220 в.

Разводка платы

От разводки платы напрямую зависят характеристики блока питания. Из-за не правильно разведенной платы может упасть КПД блока питания, возникнут пульсации выходного напряжения, блок начнет создавать помехи, да и еще куча всего остального включая нестабильную работу. В даташите производитель дает некоторые советы по разводке печатной платы и рекомендуется их придерживаться. Дается даже рисунок куска печатной платы. Набор основных правил разводки платы довольно прост:

  • C4 и R1 должны быть максимально близко к выводам SOURСE и CONTROL
  • Земля в «горячей» части блока питания это вывод SOURСE. Поэтому все дорожки которые должны быть подключены к земле следует вести именно к этому выводу. Даже если это не удобно. Это хорошо отображено на принципиальной схеме.
  • Конденсатор С2 ставить поближе к ШИМ контроллеру
  • Ноги у D1 и D2 должны быть минимально длинны и расположены они должны быть как можно ближе к трансформатору
  • Дорожка от вывода DRAIN до трансформатора должна быть как можно короче. Тоже самое касается и дорожки от трансформатора до плюса питания.

Зная и применяя эти правила можно развести свою плату, ибо моя я думаю далека от идеала и можно сделать лучше. Кроме того на моей плате изначально отсутствовал конденсатор С5. Я сейчас я расскажу почему.

Понравилась статья? Поделиться с друзьями:
Инлесница
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: